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The use of alternative double number lines as models of ratio tasks and as 
models for ratio relations and scaling 

Dietmar Küchemann, Jeremy Hodgen and Margaret Brown 

King’s College London 

In this paper we draw on ICCAMS project materials that used the double 
number line (DNL) to develop secondary school students’ understanding 
of multiplicative reasoning. In particular, we look at the use of a DNL, 
and its alternative version, as a model of ratio tasks, as a model for 
developing an understanding of ratio relations, and as a model for 
developing the notion of multiplication as scaling. 
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Introduction 

 Increasing Competence and Confidence in Algebra and Multiplicative Structures 
(ICCAMS) was a 4½-year research project funded by the Economic and Social 
Research Council in the UK. Phase 1 consisted of a cross-sectional survey of 11-14 
years olds’ understandings of algebra and multiplicative reasoning, and their attitudes 
to mathematics. Phase 2 was a collaborative research study with a group of teachers 
which aimed to improve students’ attainment and attitudes in these two areas (Brown, 
Hodgen & Küchemann, 2012). This included a design research element (Cobb, 
Confrey, diSessa, Lehrer  & Schauble, 2003) that investigated how cognitive tools 
influenced student learning. In Phase 3 the work was implemented on a larger scale.  

In Phase 2, we developed tasks involving the double number line (DNL). In this 
paper we discuss some of the insights gained from this. The DNL enables students to 
develop their understanding - it is more than just a neat tool for solving ratio tasks and 
is a more subtle and complex model than many curriculum authors suggest. 

It is relatively easy to find advocates for the DNL, especially from researchers 
in the Dutch Realistic Mathematics Education (RME) tradition (eg, van den Huivel-
Panhuizen, 2001). However, substantive research papers on the DNL are rare. We 
have found some interesting studies (eg, Moss & Case, 1999; Misailidou & Williams, 
2003; Corina, Zhao, Cobb  & McClain, 2004; Orrill & Brown, 2012), but often the 
DNL plays only a small part in the research or the tasks used are not particularly well 
designed or implemented. 

The Double Number Line (DNL) is beginning to appear quite widely in school 
mathematics curriculum materials, especially those influenced (directly or indirectly) 
by RME. Materials in the English language that stand out are the Mathematics in 
Context (MiC) project (developed in collaboration with the Wisconsin Center for 
Educational Research, University of Wisconsin-Madison and the Freudenthal 
Institute), and a UK project based on this, 
Making Sense of Maths. The DNL can also be 
found in homespun materials published on the 
internet, such as this extract (right) from a 
worksheet on the BBC’s Skillswise website. 
Note here that the DNL is poorly articulated – 
for example, the zero marks are missing - and 
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A double number line is one that has numbers on both sides, eg: 

               1       2      3       4      5       6       7      8      9      10       cm 
 
               10     20     30     40    50     60    70     80    90    100     mm 

Once you have drawn it, you can use it to do conversions, eg 6 cm = 60 mm 

1. Draw a double number line to help you convert between centimetres and metres,       
(remember 1 metre = 100 cms) and then use it to do the following conversions. 

a. 4 metres = ? cms b. 9 metres = ? cms 
c. 200 cms = ? metres d. 700 cms = ? metres 
e. 350 cms = ? metres 

2. Use these double number lines showing equivalents between fractions, decimals and 
percentages to complete the conversion table below. 

 0            0.1           0.2          0.3          0.4           0.5          0.6          0.7           0.8          0.9        1.0 
          
          

 0            10%        20%        30%        40%        50%         60%        70%        80%        90%  100% 
 
 0            0.1           0.2          0.3         0.4            0.5          0.6          0.7          0.8          0.9         1.0 
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Now check your answers.  
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the approach is very procedural.  Such limitations are not uncommon in materials 
involving the DNL. The Common Core State Standards (which have been adopted by 
the majority of states in the USA) include this reference to the DNL: 

CCSS.Math.Content.6RP.A.3 Use ratio and rate reasoning to solve real-world and 
mathematical problems, eg by reasoning about tables of equivalent ratios, tape 
diagrams, double number line diagrams, or equations. 

The mathematics standards for New Zealand also refer to the DNL, though 
surprisingly perhaps it does not appear in the September 2013 English National 
Curriculum ‘programmes of study’, nor in the NCTM Standards in the USA. 
Interestingly, though, NCTM has a ‘representation standard’, which is separated into 
these three components: 

Instructional programs from prekindergarten through grade 12 should enable all students to   

• create and use representations to organize, record, and communicate mathematical ideas; 
• select, apply, and translate among mathematical representations to solve problems; 
• use representations to model and interpret physical, social, and mathematical phenomena. 

The third component chimes (to some extent) with the RME notion of creating 
a ‘model of’ a situation (eg, Gravemeijer, 1999). RME argues that one should start by 
introducing students to accessible, perhaps ‘real-life’, situations which they are able to 
model in a natural way, and then, over time, students use these models in their own 
right to develop and formalise mathematical ideas (through ‘vertical mathematising’). 
The models shift from being ‘models of’ a situation to being ‘models for’ 
mathematical ideas. 

As mentioned above, most curriculum materials seem to focus on the second 
NCTM component, ie where a representation (or ‘model of’) is used directly as a 
device that helps students solve problems. So for example, in the MiC book Models 
You Can Count On (Abels, Wijers, Pligge & Hedges 2006) students are told, 
“Learning how to use a double number line will help you make precise calculations 
effortlessly” (p43). In the teacher’s version of the book (Webb, Hedges, Abels, & 
Pahla, 2006), it is stated 

The operations that students use on a double number line are similar to the 
operations they learned ... when they used a ratio table. Instead of a double 
number line, a ratio table could also be used. However, a double number line 
gives visual support: the numbers are ordered. Note that a double number line can 
start at zero, but a ratio table cannot (p40B). 

This statement is highly cryptic, yet it is not elaborated for the teacher-reader. 
As such, it is likely to convey a procedural view of the DNL: students use the DNL to 
perform operations. We get a hint about the nature of the DNL from the reference to 
‘visual support’ - but, the suggestions that this means ‘the numbers are ordered’ and 
that the DNL ‘can start at zero’ are rather inadequate (see below) The idea that a ratio 
table cannot contain 0, 0 seems plain wrong.  

For pragmatic reasons, we did not spend as much time as RME would advocate 
to allow the DNL model to ‘emerge’. Rather, our focus was on the first NCTM 
component, ie on using the DNL as a ‘model for’ exploring mathematical ideas. 

The DNL appears most commonly in curriculum materials as a fraction-, 
decimal- or percentage-bar, with the purpose of comparing fractions (eg, Which is 
larger, 2/5 or 3/7 ?) or for finding equivalences between fractions, decimals and 
percentages. However, it also used more generally for situations involving ratio 
relations, such as conversions (eg of metres to feet on a map scale) and geometric 
enlargement.  
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The DNL is essentially a mapping diagram, but one in which the scales on the 
two, parallel, axes have been adjusted in such a way that the mapping arrows are all 
parallel. It is most commonly used to represent linear relations, ie relations of the 
form f(x) = kx. For this, the zeros on the two scales are aligned and the scales 
themselves are both linear, as in the example for f(x) = 2.5x below. (The standard 
version, without the mapping arrows, is shown on the right.)  

A linear relation f(x) = kx has the properties f(p+q) = f(p) + f(q) and f(rp) = 
rf(p). This means that if we have a linear relation that maps 3 onto 7.5, say (as in the 
DNL above) and we want to find the image of, say, 4, we can do this not just by 
finding and applying the general multiplier ×2.5, but by using a rated addition method 
such as this:  

if the relation is linear (‘in proportion’) and 3 maps onto 7.5, then 3÷3 maps onto 
7.5÷3, ie 1 maps onto 2.5; and then (3+1) maps onto (7.5+2.5), ie 4 maps onto 10.  

The multiplier method can be said to operate between the lines, whereas rated 
addition operates along the lines. The rated addition approach might appear more 
cumbersome; however, it is often the basis for mental methods and allows us, at least 
to some degree, to adopt an informal approach using simple relations of our choosing. 
There is no choice about the between-lines multiplier - unless we are prepared to work 
‘outside’ the given lines, by in effect creating an alternative DNL (we discuss this in 
depth later). There is considerable evidence, albeit indirect, to support the notion that 
working along the lines is often more accessible to students than the general 
multiplier approach. For example, Vergnaud (1983) has found that students are far 
more likely to establish a relation that is within a measure space (what he calls a 
scalar relation) than between measure spaces (a function relation). We found evidence 
to support this when we gave these two versions of the Spicy Soup item, below, to 
parallel (but non-representative) samples of mostly Year 8 students (N=77 and N=74 
respectively). Notice that the numbers 33 and 25 had been changed round. 

Ant is making spicy soup for 11 people. He uses 33 ml of tabasco sauce. 
Bea is making the same soup for 25 people. How much tabasco sauce should she use? 

Ant is making spicy soup for 11 people. He uses 25 ml of tabasco sauce. 
Bea is making the same soup for 33 people. How much tabasco sauce should she use? 

Both items can be said to involve the multiplicative relations ×3 and ×2.27 
(approx). The version where the simpler relation is scalar (11 people and 33 people), 
was found to be much easier than the parallel version where this relation was 
functional (11 people and 33 ml), with facilities of 91% and 51% respectively. 

In the DNL, each number line usually represents a single measure space. So 
where these measure spaces are different (eg £ and $, metres and feet, people and 
sauce), it is likely, that students will work with relations along the lines (as this 
involves within measure space relations), rather than between them, unless, perhaps, 
the between-lines relation is a very simple multiplier. 

Our purpose in using the DNL was twofold – to explore the nature of ratio 
relations and to model a particular aspect of multiplication, namely multiplication as 
scaling. Our experience suggests that both uses can be enriching. However, they are 
far from unproblematic. 

0 1 2 3 4

0 101 2 3 4 5 6 7 8 9

0 1 2 3 4

0 101 2 3 4 5 6 7 8 9



4 

The use of alternative DNLs as models of ratio relationships 

The use of the DNL to solve or analyse ratio tasks is not as straightforward as 
many curriculum materials seem to suggest. It is often possible to create two DNLs 
for a given task, and they can represent the situation in subtly different ways, or in 
ways that are hard to interpret.  

Imagine we have a table of numbers (right) where there is a ratio 
relation between the rows, ie 11/25 = 33/75 (and hence between the 
columns, ie 11/33=25/75). We can extend the rows with other numbers 
fitting the 11/25 relation, and we can extend the columns with other 
numbers fitting the 11/33 
relation, eg like this (near 
right). And we can express this 
in a more general and coherent 
way using a horizontal DNL 
and a vertical DNL (far right). 
[The DNLs are drawn again 
(below), in the usual format.] 

Now imagine that our original numbers arose from a ‘real life’ ratio context. 
What might the DNLs mean? Consider a recipe context, eg the Spicy Soup task 
discussed earlier and summarised in this ratio table (right). Here the 
second DNL (shown again, below right) seems to make perfect 
sense. One line represents numbers of people, the other ml of sauce. 
We can easily create other, perfectly meaningful pairs of numbers on 
this DNL by ‘skipping’ along the lines, such as 11+11, 33+33 (22 
people would need 66 ml) or 11÷3, 33÷3 (1 person needs 3 ml). However, on the first 
DNL (below, left) the lines seem to be hybrids, representing both people and sauce. It 
might appear that we can skip nicely from 11, 25 to 22, 50, say, to 33, 75, thereby 
solving the task, but what does a pair like 22, 50 mean? If it is 22 people and 50 
people, how does this fit the story? To resolve this requires quite a high level of 
abstraction: students will need to blur the distinction between people and sauce, eg by 
thinking of the lines as simply representing ‘number of ingredients’ (if we’re happy to 
accept people in our soup ...). Then 22, 50 could refer to, say, ounces of sugar for 
Ant’s soup and Bea’s soup, or respective numbers of tomatoes. However, operating 
on numbers along the line might still seem rather odd. 

In some contexts it is easier to give a sensible meaning to both DNLs. 
The booklet Fair Shares (Dickinson, Dudzic, Eade, Gough, Hough, 2012, p16), 
from the RME-inspired series Making sense of Maths, shows how a DNL can be 
used to find the cost of a £580 computer after a 9% reduction. The DNL is 
shown below (we have added a paired-down ratio table of the basic 
information). As can be seen, this DNL works very well, since it allows students 
to solve the task using relatively simple moves along the lines.  

3311

people sauce
(ml)

Ant

Bea 7525

0 11
people sauce Ant Bea

33

0 25 75

0 11 25

0 33 75

Ant

Bea

People

Sauce (ml)

11 33

25 75

3311

1 3

5.5

12.5 7525

33 99
8 24

22

50

66

150

1.1

2.5

67.1

152.5

0.11

0.25

3311

00

7525

0

0

0 11 33

0 25 75

0 11 25

0 33 75
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The alternative DNL would 
look like the one on the left, below. 
At first sight, this does not appear 
to work well: as with one of the 
Spicy Soup DNLs, the number lines 
seem to be hybrids, this time 
representing percentage (eg 100%) and price (eg £580) simultaneously. However, 
with this context it takes less abstraction to smooth this out, eg by letting all the 
numbers represent prices (below, right): the top line could then be thought of as 
showing the full price of various articles (be they computers or other objects), with 
the bottom line showing 91% of these prices. It then becomes possible to use a rated 
addition method along-the-lines in a quite meaningful way: if a £100 computer is 
reduced to £91, then a £600 computer would be reduced to 6×£91 = £546 and a £20 
computer would be reduced to £91÷5 = £18.20, and so a £580 computer would be 
reduced to £546 – £18.20 = £527.80.  

The booklet Fair Shares (p19) also includes a task about converting a test 
result into a percentage, in this case a mark of 16 out 40 achieved by a character 
‘Demi’. The task can be summarised by this ratio table (below, right). The 
booklet first tackles the task using a DNL. Again there are two 
possibilities: we can draw parallel lines through 16 and 40 and ? and 100, 
or through 16 and ? and 40 and 100. This time both DNLs work perfectly 
well (both are amenable to an along-the-lines approach) but they model the situation 
in markedly different ways, as can be seen from the different labels we have given to 
the lines (below).  

The booklet goes for the first version (flipped over), which is used in an along-
the-lines way (below, left) to arrive at the answer, 40%. The task is then solved again 
using an extended ratio table (below, right). However, this does not fit the first DNL. 

It is perhaps unfortunate that the answer, 40 (%), is the same as the total number of 
marks on the given test. As a consequence, we get the same pairs of corresponding 
numbers on the DNL as in the ratio table (16,40; 8,20; 4,10; 40,100). However, their 
meanings are very different. The DNL and ratio table do not correspond here - the 
ratio table matches our second DNL (above). A ratio table that matches the first DNL 
would look something like this (below, right). 

The first DNL (and corresponding 
ratio table) models what a range of possible 
marks on the 40-mark test would be as a 
percentage, whereas the second DNL (and corresponding ratio table) is taking Demi’s 
specific test result of 16 out of 40 and modelling what her equivalent score would be 
if the total number of marks was different. Both DNLs (and corresponding ratio 

0 £100 £580

0 £91 ?

0 100% £580

0 91% ?

100% of price

91% of price

0 16 40

0 ? 100

0 40 100

0 16 ?

Possible mark out of 40

Mark as a percentage

Maximum mark

Demi’s mark

40

100

4

10

16

40

Possible mark out of 40

Mark as a percentage

100 580

?91

16 40

? 100
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tables) are fairly easy to use in this task, ie they lend themselves to an informal, rated 
addition approach. However, students need to be able to switch between the two 
views of the task, which may not be easy, especially if the existence of two 
viewpoints is not acknowledged. 

An early draft of the ICCAMS materials included a task about a 125g portion 
of cheesecake. Students were asked to estimate the amount of fat in the portion, on the 
basis of a ‘nutrition table’ which stated that there were 22.2g of fat per 100g of 
cheesecake. Students tended to solve this informally, using rated addition, in this kind 
of way: ‘An extra 25g will contain an extra 5g and-a-bit of fat, making about 28g in 
all’. The obvious way to model this on a DNL would be as shown below, left. 
However, we wanted to look at other ingredients, eg sugar, of which there were 30.2g 
per 100g. We thus decided to present a DNL like the one below, right. 

This latter DNL is very powerful, if it is perceived as expressing the fact that 
we can map any quantity in the ‘per 100g’ nutrition table onto the 125g portion of 
cheesecake, by using the single, general, between-the-lines multiplier ×1.25. 
However, this is far from intuitive and thus, as an early example of the DNL, it caused 
considerable confusion - among students, teachers on the project, and ourselves. In 
time, working through this confusion was an enriching experience -  and it roundly 
demonstrated that the DNL is something other than a problem-free device for solving 
ratio tasks. However some teachers were put off the DNL, as has occurred in other 
studies (eg, Orrill & Brown, 2012).  

A vital context for a thorough understanding of ratio (although not featured in 
the Fair Shares booklet) is geometric enlargement. There is considerable evidence to 
suggest that this is a challenging context (eg, Hart, 1981; Hodgen et al, 2012). A 
possible reason for this is that enlargement, especially of a curved 2-D shape, does not 
lend itself well to rated addition. However, in turn this suggests it might lend itself, 
relatively well at least, to using the general multiplicative relationship, which of 
course in this context is the scale factor. 

Consider an L-shape with a curved ‘base’ 
of 2 units and a curved ‘height’ of 8 units and 
imagine it is enlarged (near right) such that the 
curved base is now 6 units. We can try to construct 
two kinds of rated addition arguments: 
1. The original ‘base’ fits 3 times into the enlarged ‘base’, so 
the enlarged ‘height’ is 3×8 =24.   
2. The original ‘base’ fits 4 times into the original ‘height’, 
so the enlarged ‘height’ is 4×6=24. 

However, neither argument is entirely convincing. 
Because the segments are curved, the original 
‘base’ clearly does not fit into the enlarged ‘base’ or into the original ‘height’ (above, 
far right). The bits are different shapes. The true relationship here is that the enlarged 
‘base’ is the same shape as the original and that it is 3 times as large. And, of course, 
this is a general rule that applies to the whole plane and, specifically, to any 
corresponding line segments on the original and enlarged shapes. As far as the two 
potential DNLs for this situation are concerned, this general relation is best expressed 

0 22.2g

0 100g 125g

? 0 125g

0 100g30.2g

?

SUGAR

FAT

2 2
2
2
2
2

2 2 2

8

? ?

6
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by the between-the-lines multiplier on the DNL below, left. (The DNL below, right 
models the less compelling between-the-lines relation that for any scale factor the 
‘height’ is 4 times the ‘base’.) 

We wrote earlier, in reference to Vergnaud’s work, that a between-the-lines 
multiplier expresses a function relation when the lines represent different measure 
spaces, and that students tend to prefer scalar relations. In the present context, it can 
be argued that the lines represent the same measure space, so that the between-the-
lines multiplier is scalar for an enlargement. Either way, we have evidence [below] 
that for an enlargement, students are more likely to relate elements between an object 
than within an object - in terms of the DNL above, left, this suggests they tend to 
prefer between-lines rather than along-lines relations. 

[We gave parallel samples of mostly Year 8 students an Enlarged-L item 
where they were asked to find the length of the grey line in one or other of these 
diagrams (right), given that the two Ls were 
“exactly the same shape”. Both items involve the 
relatively simple multiplier ×4. In the case of the 
near-right diagram, where this is a between-
objects multiplier, the facility was 75% (N=73), 
whereas for the far-right diagram, where ×4 is a 
within-object multiplier, the facility was only 
36% (N=74). Note also that both facilities are 
substantially lower than the corresponding Spicy 
Soup facilities of 91% and 51%.] 

Multiplication as scaling 

Young children tend to see multiplication additively, ie in terms of repeated 
addition. Even when multiplication involves non-whole numbers, it can be difficult to 
free oneself from an additive view: it is still possible to construe an expression like 
2.3 × 3.7 as ‘2.3 lots of 3.7’. The area model might be helpful here (eg, Barmby, 
Harries, Higgins  & Suggate, 2009), though in the UK it tends to be introduced rather 
hastily and reduced to a rule (such as area = length × breadth) whose meaning 
students can quickly loose touch with. And area does not really banish an additive 
perspective: we can still think of the area of a 2.3 cm by 3.7 cm rectangle as being 
covered by 2.3 rows of 3.7 unit squares, or 3.7 columns of 2.3 unit squares.  

A situation where an additive view can be more problematic is scaling, as in 
‘This pumpkin weighs 2.3 kg; that one weighs 3.7 times as much’. Here one could 
think of 3.7 lots of the smaller pumpkin as being equivalent to the larger pumpkin, but 
this is not the same as the larger pumpkin – it would win you no prizes ... The same 
thing arises in the case of geometric enlargement of the plane: an additive 
interpretation of the enlargement of a line segment, say, can give the correct total 
length, but the result is not congruent to the enlarged segment. This is particularly 
salient when a segment is curved, as with the L-shapes above. This suggests that 
geometric enlargement, despite being cognitively demanding, provides a vital context 
for developing the notion of multiplication as scaling.  

In turn, an awareness of the notion of scaling should help students apprehend 
that the DNL provides models for ratio by means of between-the-lines as well as 

0 2 8

0 ?6

0 2 6

0 ?8

Segments on L-shape

Segments on enlarged 
L-shape

‘Base’

‘Height’
×3 ×4

32 cm

21 cm

8 cm

? cm

32 cm

21 cm8 cm

? cm
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along-the-line relations and thus help students develop a more abstract, multiplicative 
understanding of ratio. 
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