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Multiplicative reasoning is a key competence for many areas of 
employment and everyday life, and for further mathematical study. It is 
however a complex conceptual field. The ICCAMS project, with 
multiplicative reasoning as one of its two focuses, has in Phase 1 
conducted a broadly representative survey of attainment which suggest 
that standards in this area have not risen since the 1970s and that 
relatively few students are achieving competence in the relevant areas of 
the national strategy Key Stage 3 framework. Student difficulties are 
illustrated by evidence from group interviews in Phase 2 of the project. 
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Background: multiplicative reasoning 

The ESRC project ‘Improving Competence and Confidence in Algebra and 
Multiplicative Structures’ (ICCAMS) selected these two areas of the curriculum 
because of their pivotal role in the Key Stage 3 (age 11-14) mathematics curriculum, 
and especially for the further study of mathematics and for its functional application.  

While algebra centrally underpins the whole of the further study of 
mathematics, it is the basis for only the more sophisticated applications.  In contrast 
multiplicative reasoning is the basis of most mathematical applications and is relevant 
to all pupils. This paper will examine aspects of performance in multiplicative 
reasoning that students find difficult and which form a major barrier to developing 
competence and confidence in functional applications. 

The delineation of the conceptual field of multiplicative reasoning is complex 
(Harel and Confrey 1994, Confrey et al. 2009). While there are other aspects of 
multiplicative reasoning e.g. those concerned with combinatorics or calculation of 
areas and volumes, applications of the ratio/rate model are by far the most common 
and only these will be discussed in this paper. 

Broadly speaking, the main contexts of ratio/rate application are those where 
two or more values are being compared, and/or where one value is being scaled up or 
down to give another. Sometimes these comparisons or operations are appropriately 
expressed additively and involve the ideas of difference (‘a is d more/less than b’); 
more often they are multiplicative (‘a is r times bigger/smaller than b’).  

The values being compared may be of essentially the same quantity and the 
comparison may be related to two or more different ‘things’, or to one ‘thing’ at two 
or more different times (numbers of boys and girls; changing numbers of boys). 
Especially where the quantity is a discrete variable, or where the multiplying factor is 
a whole number or familiar fraction, this relationship is often expressed as a ratio a:b. 
Where the comparison is between two variables which refer to different quantities 
measured in different units, the relation is usually expressed as a rate a/b which takes 
the form of a single number to which is attached a composite unit like miles per hour 



 

or £ per capita derived from the units in which the two variables are measured. These 
comparisons are equivalent in reverse to scaling up a value to get another value, 
respectively by using a ratio or scale factor, or by using a rate.   

Whereas a specific value of a rate is a single number with a composite unit, a 
specific ratio a:b can be regarded as a set of pairs of numbers which is associated with 
two ‘dimensionless’ rates a/b and b/a. Such a dimensionless rate is often described as 
a proportion, especially when it is expressed as a fraction or percentage and refers to a 
comparison between one contributing part and a whole collection (‘what proportion of 
the class are boys?’), or to similar geometrical figures (‘have the same proportions’) . 
‘Direct proportion’ is also used more generally to describe a multiplicative relation 
between two variables.  

Rates often but not always involve the variable of time and are very 
commonly used in finance and economics (e.g. GNP per capita, rates of interest, and 
exchange), in the physical sciences (e.g. speed, density, power, pressure) and in health 
(e.g. rates of growth, medicine doses). Other applications use dimensionless rates 
(proportions), for example probability and risk, and enlargement through scaling in 
spatially focused professions such as architecture, design, and engineering.  

Thus all the ratio/rate applications have in common the two processes which 
constitute multiplicative thinking: the derivation of a rate (or ratio or proportion) from 
two corresponding values (a/b) of two or one variables, and the use of a rate (or ratio 
or proportion) to calculate an unknown value of one variable given a corresponding 
value. These require respectively the operations of division and multiplication, with 
division if anything taking the predominant role.  

In our primary curriculum the aspect of multiplication which is still most 
emphasised is that of repeated addition (‘add three five times’) rather than that leading 
to multiplicative reasoning and ratio (‘five for every one of three’, ‘five times larger 
than 3’). This is even when the ratio meanings have been demonstrated to be easier 
(Nunes and Bryant 2009).  

Multiplicative reasoning starts in the primary school with whole number 
quantities and whole number scale factors. Later in primary schools and especially in 
Key Stage 3, it becomes tied in strongly with rational number reasoning. Dickson et al 
(1984, 287) note there are two meanings of rational numbers, those related to 
measurement (1.7 metres) and those to operators – essentially rates or scale 
(multiplying) factors (1.7 times as large); Confrey et al. (2009) separate off from the 
latter a further meaning, that of ratio, but there seems little justification for doing so 
since ratios are so closely related to the operators of rates and scale factors.  

Again, the non-ratio ‘measurement’ meanings of rational numbers as a 
measure of a fractional part of a spatial whole, or as a decimal number on a number 
line, are the ones that tend to be emphasised in the primary curriculum, although there 
is some mention of meanings concerned with ratio (‘3 for every 5’,  ‘3/5 of’). 

Perhaps not surprisingly, given the complexity of the conceptual field on 
which it depends, and current emphases in primary schools, in the early years of 
secondary school students experience problems with multiplicative reasoning. This 
paper explores some of these using early results from the ICCAMS project. 

Methods: the ICCAMS project 

Increasing Competence and Confidence in Algebra and Multiplicative 
Structures (ICCAMS) is a 4-year research project funded by the Economic and Social 
Research Council as part of a wider initiative aimed at identifying ways to 



 

participation in Science, Technology, Engineering and Mathematics (STEM) 
disciplines.  

Phase 1 of the project consists of a large-scale survey of 11-14 years olds’ 
understandings of algebra and multiplicative reasoning in England. This is followed 
in Phase 2 by a collaborative research study with teacher-researchers who are using 
the results of Phase 1 on their own classes as part of extending the investigation to 
classroom/group settings. The aim is to examine how formative assessment can be 
used to improve attainment and attitudes, and finally how the work can be 
disseminated on a larger scale. Currently we have had the first year of the survey and 
the exploratory year of the collaborative study. 

In Phase 1, comparison with the Concepts in Secondary Mathematics and 
Science (CSMS) study (Hart et al. 1981) will also enable us to examine how students’ 
understandings have changed since 1976. The survey consists of three of the CSMS 
tests, Algebra, Ratio and Decimals, and an attitudes questionnaire. Some selected 
items from the original CSMS Fractions test were appended to the Ratio test. Results 
discussed here relate mainly to the Ratio and part of the Decimals tests. 

In late June or early July 2008, tests were administered to a sample of 
approximately 3000 students from approximately 90 classes in 11 schools as shown in 
Table 1. Each student took two of the three tests so as to provide comparative 
information between tests but not to overload students. The numbers of students in 
each year-group taking each test is therefore roughly two-thirds of the total number of 
students involved in that age group in 2008. 

 
 
 
 
 

Table 1: Numbers taking the two test in 2008 sample  
 
The sample of 20 schools involved in the survey across 2008 and 2009 is a 

stratified random sample drawn from MidYIS, the Middle Years Information System. 
MidYIS is a value added reporting system provided by Durham University, which is 
widely used across England (Tymms and Coe, 2003). Because some schools were not 
able to complete the testing in 2008, the 2008 sample for which results will be 
reported on an interim basis is not fully representative and is slightly skewed towards 
higher attaining students. The original CSMS test on Ratio was administered to a 
sample only from Years 8-10, although Decimals were used with Years 7-10 and 
Fractions with Years 7-9. In the current study, because the focus was on Key Stage 3, 
all the tests were administered to students in Years 7-9. 

Ratio items, some Decimals items, and almost all of the small set of Fractions 
items used in this study, were designed to assess whether students could apply 
multiplicative reasoning in increasingly complex situations. 

In the original CSMS data analysis in the 1970s, items were selected from 
each test to form a series of hierarchical levels of difficulty. These items included 20 
out of the 27 items in the Ratio test and 39 out of 72 items in the Decimals test. The 
criteria for selected items and levels were consistent performance across different age-
groups in the sample, high levels of correlation within the items for each level and 
strong hierarchical relationships between items in different levels (Hart et al. 1981). 
The remaining items that were retained were for diagnostic purposes. There were 
different numbers of levels associated with each test, since the levels were derived 
empirically; Ratio had 4 levels and Decimals had 6. The additional 15 items on 

Test Year 7 Year 8 Year 9 Total 
Ratio(+fractions) 680 754 588 2022 
Decimals 717 767 598 2082 



 

fractions which were added to the Ratio test to better assess multiplicative reasoning, 
were drawn from items which appeared in the hierarchy of the CSMS Fractions test. 
However in the case of Fractions only single item comparisons with the 1976 data 
will be possible since the full set of Fractions items was not used. 

Students were judged to have been successful at a specific level if they had 
successfully answered two-thirds or more of the items at that level. Students who had 
not achieved two-thirds of Level 1 items were said to be ‘at Level 0’. It was possible 
to broadly describe the type of mathematical understanding required for the items in 
each level in each topic, although these were not always neat descriptions since the 
items and levels were assigned on empirical not theoretical grounds.  

As part of the ICCAMS study, the CSMS tests were checked against the 
current version of the National Curriculum and appeared to form just as appropriate 
assessments as they had done in the 1970s. Piloting indicated that only minor 
updating of language or context for a very small number of items was required which 
would be unlikely to significantly affect their difficulty.  

Phase 2 represents the intervention part of the project in which the aim is to 
design, trial and disseminate an intervention based on formative assessment practices 
in Year 8 in the areas of algebra and multiplicative reasoning. Two Year 8 teachers 
from each of four schools are part of the research team, with the schools having a 
range of intakes and attainment. The classes involved in 2008/9 covered almost the 
full range of Year 8 attainment. The work in the first year has been partly exploratory, 
with all members of the research team undertaking several school-based activities and 
reporting back in team discussions. These activities have included observing student 
responses in lessons relating to algebra and multiplicative reasoning, interviewing 
small groups of Year 8 students about aspects of their mathematical understanding, 
and trying out starters and other class activities as diagnostic tools.  

Results and discussion 

Because the full analysis of CSMS test results on the complete representative 
sample including those tested in Summer 2009 is not yet available, this account of 
Phase 1 results must be interpreted with some caution as it may differ somewhat from 
the final outcomes, especially because the mean MidYis score of the 2008 sample was 
a little higher than the national average.  

The proportional bar-charts for the ratio results for Years 8 and 9 are shown in 
Figures 2 and 3 respectively. These suggest that in both year groups, as in other tests, 
there is a higher proportion below Level 1 in 2008 than in 1976. The reasons for this 
general finding are not yet clear. At the top levels the picture is more encouraging, 
although the improvements over 1976 are small enough to possibly disappear when 
the sample is larger and better balanced. 

The verbal description of the levels is: 
Level 1: Simple integer rates like ×2 or ×3 but including halving  

Level 2: Rates like ×1.5 set in contexts that allow a ‘building up’ approach such 
as taking an amount then half as much again 

Level 3: Problems involving fractional quantities or rates such as ×12/3 set in 
contexts that allow an indirect ‘building up’ approach or which prompt the unitary 
method  

Level 4: Non integer enlargement (e.g. 5:3) or problems set in a context involving 
scaling continuous quantities where a ‘building up’ approach (or the unitary 
method) is not meaningful  



 

Figure 2: Proportions of Year 8 students assessed at the different CSMS levels for Ratio in 
1976 and 2008              [N= 754 (2008), 800 (1976)] 

 

Figure 3: Proportions of Year 9 students assessed at the different CSMS levels for Ratio in 1976 and 
2008               [N= 588 (2008), 767 (1976)] 
 

So the results in Figures 2 and 3 suggest that two-thirds of Year 8 students and 
well over half Year 9 students cannot consistently manage anything in terms of rate 
and ratio other than reasoning involving whole number multiplication and division by 
2, with about 20% at Year 8 and about 10% at Year 8 not even managing this reliably.  

Currently it looks as though over 15% at Year 8 and over 25% at Year 9 can 
manage non-unitary ratio where some intermediate step is reasonably easy to spot. 
While only about 5% of Year 8 and 10% of Year 9 are fully operational with ratio, 
this proportion is equivalent at Year 8 and better at Year 9 than results for 1976.  

Comparing these levels with the national strategies framework for Key Stages 
3 and 4, there is not a direct match but it appears that in Years 7 and 8 students are 
expected to be taught the content at Level 3, and Level 4 is intended to be covered by 
the end of Year 9. (Some aspects of enlargement only appear in Year 10 but the 
examples given for Year 9 seem to suggest that calculation and use of scale factors 
like 0.7 is to be covered there.) The results therefore suggest that under 20% of 
students are succeeding on this material.  

The proportions at different levels for the Decimals test were generally better 
than in 1977, except at the highest and lowest levels in Year 9. Most of the levels 
were defined in relation to understanding of the decimal place value system which 
arise in the measurement aspect of decimals, but part of the highest level is most 
closely related to the idea of multiplicative reasoning: 

Level 6: Decimals which result from division, and the existence of an infinite 
number of decimals  



 

The proportion who reached Level 6 was about 10% at Year 8 and 15% at 
Year 9. The Year 8 result was better than in 1977 and the Year 9 result was worse, but 
again the margins were small and are thus unreliable. This result ties in well with the 
results for ratio as the understanding that you can obtain a decimal answer from a 
whole number division (and to find it with an easy divisor, such as 20) is needed for 
the highest level, Level 4, of the Ratio test. Again this Level 6 content is covered in 
the national strategy framework by the end of Year 8, but by the end of Year 9 still 
only 15% seem to have grasped it. (No comment is possible on Fractions levels as 
only a small number of 15 items were included in the ratio test.) 

Looking at the proportions of items in each test on which there is significant 
improvement, significant reduction, or no significant change (Figure 4), it becomes 
clear that while there are improvements on over 50% of Decimal items, there are 
hardly any items with improvements on the Ratio test and none from the Fractions 
test.  
 

 
Figure 4: Numbers of items on which success rates have significantly increased or decreased between 
1976/7 and 2008 in each mathematical topic using Year 9 data  

 
Again many of the Decimals items with significantly improved scores were 

related to Decimals used for measurement rather than as operators. This leaves us 
therefore with the result that multiplicative reasoning seems to be generally weak and 
if anything to have deteriorated since the 1970s.  

This is illustrated in Figure 5 by detailed results for one of the Level 4 items in 
the Ratio test. Although the ratio is an easy one of 2:3, the fact that the problem 
cannot be readily solved by the unitary method or by any form of addition strategy 
makes it difficult. Although enlargement first appears in the Year 8 strategy 
framework, and with non-whole number factors in Year 9, their answers indicate that 
many students at the end of Years 8 and 9 do not seem to appreciate that enlargement 
requires multiplicative rather than additive reasoning. 

The results for both parts of the question are similar, as are the results for 1976 
and 2008; the fact that the small initial lag in the 2008 results at the start of Year 9 
closes by the end may be due to the inclusion of non-whole number enlargement in 
the Year 9 framework. However, even at the end of Year 9, only 20% of students can 
solve the problems. 

To illustrate student thinking a summary is given of discussions on this ‘Kurly 
Ks’ item with two groups of Year 8 students, both from London comprehensive 
schools with GCSE results well above the national average.  

 



 

 

 
 
Figure 5: Success rates for Years 7 to 10 on an enlargement item in 1976 (dotted lines) and 2008 
(unbroken lines) 
 

Dietmar and Margaret with Nasreen, Ahmed, Maniyan and Susan (middle 
set) 28/11/08   Ahmed quickly launches in with ‘13 units… 4 more there... cos 
that’s 9, that will be 4 more the same...’. Others agree… They all went for an 
addition strategy, either 9+4 or 12+, to get 13. Dietmar then suggests: ‘Say 
instead of this being 12 we made it 16... and this bit’s still 9...’. Nasreen sticks to 
the addition strategy: ‘You add 8 now’. Ahmed agrees. Margaret suggests that 
instead of adding 8 you could double both numbers. Three of them say no, you 
have to add 8. (Not sure about Maniyan, whose English is weak.) Margaret asks 
what the answer would be if you did double the 9. Ahmed: ’18, and it’s supposed 
to be 17’ (Susan agrees, and Nasreen I think). They seem to regard doubling as a 
special case Ahmed: ’you don’t just do times 2 because it works on one answer’. 
Later Susan adds ‘You’re going to have to double if it’s twice as big, but if it is 
just under twice as big you can’t double everything.’ When Dietmar then sketched 
similar rectangles (8 by 9 and 16 by ?) they tended to prefer ‘doubling’ i.e. 
preferred the answer 18 to 17.  

Dietmar and Jeremy with Bethan, Zack and Danny (top set) 10/11/08 Starts 
with a long silence...little whispers...Bethan: ‘8 is kinda equal to 12, in the same 
way that 9 is equal to RS’... pause…Dietmar: next step? Bethan says she is still 
thinking... Zack: ‘don’t really get... I was thinking... if the 8 here (points) and 
that’s 9, you plus it to find out that? but...’ [I now think he is working just on the 
little K and wants to add the 8 and 9 to find DE, but then thinks it might not work 
as the lines are curved – but at the time we didn’t appreciate this] He returns to 
RS on large K and now suggests 13. Bethan says she’s still not sure.... Jeremy to 
Zack: why 13? Zack: difference is 4... larger by 4... so this (RS) should be larger 
(than the 9) by 4.. if it’s an accurate enlargement. Bethan: I think it’s 13 and a 
half... cos 8 up to 12 is two-thirds... so 9 is two-thirds.. so I halved 9 which is 4.5 
then add it onto 9 so you get . Jeremy: you think 13, you think 13.5... asks Bethan 



 

to explain again. She now uses multiplication rather than adding in the final step : 
‘you halve it, then times it by 3 to get 3 thirds’. Zack later sticks to his additive 
strategy: like 8 and 12... the difference 4, hey... if you enlarge the smaller shape to 
get the bigger shape, wouldn’t everything have to have the same... difference? 
Bethan: I’m not sure if you have to add something or times it by something... 

These interview quotations confirm that students from the middle of the 
attainment range, and also some from nearer the top, tend to use an addition strategy 
for enlargement. They reluctantly allow some exceptions, for example doubling, but 
do not see that they could use a multiplicative factor other than a whole number 
(Susan’s final comment is revealing). It is only a few higher attaining students, like 
Bethan, who are able to even if tentatively see their way through to multiplication 
strategies, even when easy scale factors as here allow ‘building up’ strategies. 

Conclusions 

Multiplicative reasoning is clearly an area which is key to both a large number 
of mathematical applications and to further study in mathematics. Yet the evidence 
presented here suggests that students have a very weak grasp of important aspects of 
the conceptual field and that that understanding in this area has not improved since 
the 1970s. This is not because these things are not taught as most of the students in 
the sample will have experienced teaching of the relevant ideas. We have to conclude 
that the teaching has not been very successful, and it is possible to speculate many 
reasons why this should be so. For example it may not have been appropriately related 
to students’ prior understandings, or may not have been sustained enough and broad 
enough to have had a permanent effect. In Phase 2 of the project we will be 
developing an intervention based on formative assessment and more sustained periods 
of teaching to see if this improves the learning of these important ideas. 
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