How have students' understandings of mathematics changed over time?

Robert Coe, Jeremy Hodgen, Margaret Brown & Dietmar Küchemann King's College London / Durham University

The "standards" debate

- "School leaving exam" (GCE/GCSE) A*-C: 23% (early 1980s) → 58% (2012) BUT considerable slippage in standards (Coe, 2008)
- TIMSS: Significant increase since 1995 484 → 541 (Grade 4) 498 → 513 (Grade 8) BUT fall in PISA (since 2003)

Sample (Y9)

Algebra	Number	Ratio	
1647	1661	1595	
961	247	767	
	1647	1647 1661	

Methods

CSMS (1970s)

- Items: Diagnostic interviews / theory
- Levels 0 → 4:
 - Empirically derived (Rasch-like process)
 - Based on "best-performing" items

ICCAMS

- Levels & items: Reality check / Rasch
- Differences: Bootstrap & Simulation

Are the samples comparable?

- Sampling per se does not guarantee this
 - Non-response / opportunity sampling
 - Small number of schools
- Representativeness claims rest on matched ability scores on a nationally normed test
- Issues:
 - How good are the norms (at both times)?
 - Is the relationship between ability scores and ICCAMS scores strong enough to 'anchor' the sample (at both pupil- and school-level)?
- Bootstrapping provides an estimate of precision

Change in attainment since 1970s

- Algebra, ratio & fractions
 - No improvement
- Number
 - Slight improvement a middle of attainment range
- All
 - Decrease in proportion of highest attainers
 - Increase in proportion of lowest attainers
- Similar picture at Year 8